Birthday Agent Code Module 2
**
* Global constant for the Gemini model to use.
* gemini-2.5-flash is fast and perfect for this kind of creative text generation.
*/
const GEMINI_MODEL ="gemini-2.5-flash";
**
* The recipient email address for all notifications.
*/
const RECIPIENT_EMAIL = "CHANGE THIS TO YOUR EMAIL ADDRESS";
Jx*
* --- MAIN ENTRY POINT (CALLED BY DAILY TRIGGER) ---
* Checks for both gift reminders (14 days out) and birthday messages (today).
*/
function mainDailyCheck() {
Logger.log("--- Starting Two-Stage Daily Check ---");
const today = new Date();
sendGiftReminders(today);

sendBirthdayMessages(today);

Logger.log("--- Daily Check Complete ---");

}

Jx*
* Checks for birthdays exactly 14 days from today for Classifications 1 & 3,
* generates gift suggestions, and sends a gift reminder email.

* @param {Date} today The current date.

*/

function sendGiftReminders(today) {

Logger.log("Starting Gift Reminder Check...");

const spreadsheet = SpreadsheetApp.getActiveSpreadsheet();

const sheet = spreadsheet.getSheetByName('Birthdays');

if ('sheet) {
Logger.log("ERROR: Sheet not found in sendGiftReminders.");

return;

}

// Define the target date: 14 days from now

const fourteenDaysOut = new Date(today);

fourteenDaysOut.setDate(today.getDate() + 14);

const targetMMDD = (fourteenDaysOut.getMonth() + 1).toString().padStart(2, '0') +'/' +
fourteenDaysOut.getDate().toString().padStart(2, '0");

const currentYear = today.getFullYear();

// Get data including the NEW 6th column (Last Gift Sent Year)

const dataRange = sheet.getRange(2, 1, sheet.getLastRow() - 1, sheet.getLastColumn());

const data = dataRange.getValues();

const birthdaysDueGifts = [];

// Columns: [Name, Birthday(1), Class(2), LastSentYear(3), Notes(4), LastGiftSentYear(5)]

data.forEach((row, index) => {

const [name, birthday, classification, , notes, lastGiftSentYear] = row;

// Ensure the birthday column is formatted as a string MM/DD for comparison

const birthdateString = birthday instanceof Date ?

(birthday.getMonth() + 1).toString().padStart(2, '0') + '/' + birthday.getDate().toString().padStart(2,
'0'):

String(birthday).trim();

// Check 1: Is today 14 days before the birthday?

const dateMatches = (birthdateString === targetMMDD);

// Check 2: Is it Classification 1 or 3?

const isPriority = (classification === 1 || classification === 3);

// Check 3: Has the gift reminder not been sent this year?
const notSentThisYear = (lastGiftSentYear !== currentYear);
if (dateMatches && isPriority && notSentThisYear) {
birthdaysDueGifts.push({

name: name,

classification: classification,

notes: notes,

rowlndex: index + 2 // Row in sheet

if (birthdaysDueGifts.length === 0) {
Logger.log("No gift reminders due today.");

return;

}

/! --- Process and Send Gift Reminder Email ---

S ek

let emailBody = * BEZE %575 **GIFT REMINDER: ${birthdaysDueGifts.length} BIRTHDAY(S) IN 2 WEEKS

b o o =

(${targetMMDD})** EEZZEEE\n\n";
emailBody +="--- Gift Suggestions ---\n";

const aiGiftPromises = [];

birthdaysDueGifts.forEach(person => {

emailBody += " \n**${person.name}** (${getClassificationLabel(person.classification)})\n";
emailBody += " - Context: ${person.notes || 'None provided.\n";
aiGiftPromises.push(generateGiftSuggestions(person));

D;

const generatedGifts = generateAllMessages(aiGiftPromises);

emailBody += "\n\n--- Al-Generated Recommendations ---\n\n";
generatedGifts.forEach(result => {

emailBody += " ## Gift Ideas for ${result.name}:\n";
emailBody +="--------mm e \n';
emailBody += result.message;

emailBody += "\N-m-=mm oo \n\n';
b;

MailApp.sendEmail({

to: RECIPIENT_EMAIL,

e e

subject: " EEZE ™ 2 Week Birthday Reminder: ${birthdaysDueGifts.length} Birthday(s) Coming Up!

(${targetMMDD})",

body: emailBody

b;

Logger.log(" Successfully sent gift reminder email for ${birthdaysDueGifts.length} birthday(s).");
// Update the "Last Gift Sent Year" column (Column F, index 6)
birthdaysDueGifts.forEach(person => {

sheet.getRange(person.rowlndex, 6).setValue(currentYear);

1;
Logger.log(" Successfully updated ${birthdaysDueGifts.length} rows for Last Gift Sent Year.");

}

Jx*
* Checks for birthdays exactly today, generates the Al message, and sends the final email.
* @param {Date} today The current date.

*/
function sendBirthdayMessages(today) {

Logger.log("Starting Birthday Message Check...");

const spreadsheet = SpreadsheetApp.getActiveSpreadsheet();

const sheet = spreadsheet.getSheetByName('Birthdays');

if ('sheet) {

Logger.log("ERROR: Sheet not found in sendBirthdayMessages.");

return;

}

const todayMMDD = (today.getMonth() + 1).toString().padStart(2, '0') + '/' +
today.getDate().toString().padStart(2, '0');

const currentYear = today.getFullYear();

// Get data including the original 5 columns (Last Sent Year is column D, index 4)

const dataRange = sheet.getRange(2, 1, sheet.getLastRow() - 1, sheet.getLastColumn());

const data = dataRange.getValues();

const birthdaysDueMessage =[];
// Columns: [Name, Birthday(1), Class(2), LastSentYear(3), Notes(4), LastGiftSentYear(5)]
data.forEach((row, index) => {

const [name, birthday, classification, lastSentYear, notes,] = row;

/! Ensure the birthday column is formatted as a string MM/DD for comparison

const birthdateString = birthday instanceof Date ?

(birthday.getMonth() + 1).toString().padStart(2, '0") + '/' + birthday.getDate().toString().padStart(2,
'0'):

String(birthday).trim();

// Check 1: Is today the exact birthday?

const dateMatches = (birthdateString === todayMMDD);

// Check 2: Has the main birthday email not been sent this year? (Column D)
const notSentThisYear = (lastSentYear !== currentYear);

if (dateMatches && notSentThisYear) {

birthdaysDueMessage.push({

name: name,

classification: classification,
notes: notes,

rowlndex: index + 2 // Row in sheet

if (birthdaysDueMessage.length === 0) {
Logger.log("No birthday messages due today.");

return;

}

// --- Process and Send Birthday Message Email ---

4 ot o i e o o o

let emailBody = - BB EE & E % = e **BIRTHDAY MESSAGE ALERT:
${birthdaysDueMessage.length} BIRTHDAY(S)

[T

TODAY!** BEEEHEERSIE\n\n";
emailBody +="--- Al-Generated Messages ---\n";

const aiMessagePromises =[];

birthdaysDueMessage.forEach(person => {
aiMessagePromises.push(generateGeminiMessage(person));

D;

const generatedMessages = generateAllMessages(aiMessagePromises);

emailBody +="\n\n--- Messages Ready to Send ---\n\n";
generatedMessages.forEach(result => {

const person = birthdaysDueMessage.find(p => p.name === result.name);
const classification = person ? person.classification : 0;

const classificationLabel = getClassificationLabel(classification);

emailBody += " ## Message for ${result.name} (${classificationLabel}):\n";

emailBody +="--------mm e \n';
emailBody += result.message;

emailBody +="\N---------mmmm \n';

if (classification === 5) {

emailBody +="\n*(Reflective message. Send with care.)*\n';

}else{

emailBody +="\n*(Ready to copy and paste!)*\n’;

}

emailBody += '-mmmmm e \n\n';

};

MailApp.sendEmail({

to: RECIPIENT_EMAIL,

subject: - BEEE % [E% 2 ik Birthday Alert! Send a Message to ${birthdaysDueMessage.map(p =>
p.name).join(}, ")}

Today!",

body: emailBody

1;

Logger.log(" Successfully sent birthday message email for ${birthdaysDueMessage.length}
birthday(s).");

// Update the "Last Sent Year" column (Column D, index 4)
birthdaysDueMessage.forEach(person => {

sheet.getRange(person.rowlndex, 4).setValue(currentYear);

D;

Logger.log(" Successfully updated ${birthdaysDueMessage.length} rows for Last Sent Year.");

}

**

* Helper function to find a person's classification by name.

* (Not strictly necessary now, but good for debugging/future use)
* @param {string} name

* @param {Array<Object>} list

* @returns {number | undefined}

*/

function getPersonClassification(name, list) {
const person = list.find(p => p.name === name);
return person ? person.classification : undefined;
}

**

* Reusable function to handle parallel API calls and error parsing.
*/

function generateAllMessages(promises) {

const responses =[];

promises.forEach(item => {

const personName = item.name;

let rawResponseText = null;

let httpStatus = 0;

try{

const response = item.fetcher();

httpStatus = response.getResponseCode();

rawResponselext = response.getContentText();

if (httpStatus !==200) {
Logger.log(" API FAILURE for ${personName}: Status ${httpStatus}. Raw Response:

${rawResponseText}");

let errorMessage = " API Call failed with HTTP Status ${httpStatus}. See logs for details.";

try{

const errorData = JSON.parse(rawResponseText);

errorMessage = " API Error (${httpStatus}): ${errorData.error?.message || 'Unknown API Error'}";
} catch (e) {

errorMessage = " API Error (${httpStatus}): Raw response was not JSON. Server response:

${rawResponseText.substring(0, 100)}...";

}

responses.push({
name: personName,
message: Al generation failed. ${errorMessage}’

D;

return;

}

const data = JSON.parse(rawResponseText);

let message = "Al generation failed (no content found).";

if (data.candidates && data.candidates[0] && data.candidates[0].content &&
data.candidates[0].content.parts) {

message = data.candidates[0].content.parts[0].text.trim();

}

responses.push({ name: personName, message: message });

}catch (e){

Logger.log(" SYSTEM EXCEPTION for ${personName}: ${e.toString()}");
responses.push({

name: personName,

message: - ERROR: Failed to generate content (System Exception). Details: ${e.message}’

return responses;

}

J*x

* Generates the specific prompt and prepares the API call structure for the message.
*/

function generateGeminiMessage(person) {

const { name, classification, notes } = person;

let systemlinstruction ="";

let userQuery ="";

const safeNotes = String(notes || "no specific interests").replace(/"/g, "");
if (classification === 5) {

systemlnstruction = " You are a thoughtful and sensitive writer. Write a short, reflective, and
touching message (2-3 sentences max) that focuses on gratitude, positive memories, and the
enduring impact of the person named ${name}. Do not mention death or the term 'deceased". The
tone should be gentle and uplifting, perfect for private reflection. " ;

userQuery =~ Write a reflective message about ${name} based on the following context:
"${safeNotes}"";

}else{

const classificationText = getClassificationLabel(classification);

systemlnstruction = " You are a creative and warm friend. Generate a unique, personalized birthday
message for ${name}. The message should be warm, concise (2-3 sentences), and suitable for a
${classificationText}. Use the provided context to make it specific and avoid generic phrases like 'l

hope you have a great day.' Just provide the message text, nothing else. " ;

userQuery = * Write a personalized birthday wish for ${name}. Context/Interests: "${safeNotes}".";

}

const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY");

consturl =

" https://generativelanguage.googleapis.com/v1beta/models/${GEMINI_MODEL}.generateContent";
const payload ={

contents: [{ parts: [{ text: userQuery }] }],

systemlnstruction: { parts: [{ text: systemlInstruction }] },

generationConfig: {

temperature: 0.8,

b

2

const options = getApiOptions(apiKey, payload);

const apiCallFunction = () => UrlFetchApp.fetch(url, options);

return { name: name, fetcher: apiCallFunction };

}

Jx*

* Generates the specific prompt and prepares the API call structure for gift suggestions.
*/

function generateGiftSuggestions(person) {

const { name, classification, notes } = person;

const safeNotes = String(notes || "general interests").replace(/"/g, "");

const classificationText = getClassificationLabel(classification);

const systemlnstruction = "~ You are an expert gift advisor. Provide three unique and thoughtful gift
ideas for a person named ${name} who is a ${classificationText}. The suggestions should be practical,
creative, and directly based on their listed interests. Format the response as a bulleted list with a brief

description for each idea.”;

const userQuery = " Generate three gift suggestions for ${name}. Their interests/context are:

"${safeNotes}".";

const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY");

consturl =

" https://generativelanguage.googleapis.com/v1beta/models/${GEMINI_MODEL}.generateContent";
const payload ={

contents: [{ parts: [{ text: userQuery }] }],

systemlnstruction: { parts: [{ text: systemlInstruction }] },

generationConfig: {

temperature: 0.7, // Slightly lower temperature for practical suggestions

b

2

const options = getApiOptions(apiKey, payload);

const apiCallFunction = () => UrlFetchApp.fetch(url, options);

return { name: name, fetcher: apiCallFunction };

}
Jx*

* Creates the standard UrlFetchApp options object.
*/

function getApiOptions(apiKey, payload) {
return {

method: 'post),

contentType: 'application/json/,

headers: {'x-goog-api-key': apiKey },
payload: JSON.stringify(payload),
muteHttpExceptions: true

2

}

**
* Helper function to return the full classification name.
*/
function getClassificationLabel(classification) {
switch (classification) {
case 1:return "Close Family";
case 2: return "Extended Family";
case 3: return "Close Friend";
case 4: return "Friend";
case 5: return "Deceased (Reflection)";

default: return "Unknown Category";

}
}

/**

* Sets up a daily time-driven trigger for the main function.

* RUN THIS FUNCTION *ONCE* TO START THE AUTOMATION.

*/

function createDailyTrigger() {

// Delete any existing triggers to prevent duplicates

const triggers = ScriptApp.getProjectTriggers();
triggers.forEach(trigger => {

// IMPORTANT: Change the handler function name to the new main entry point
if (trigger.getHandlerFunction() === "'mainDailyCheck’) {
ScriptApp.deletelrigger(trigger);

}

};

// Create a new daily trigger (runs between 7 AM and 8 AM)

ScriptApp.newTrigger('mainDailyCheck') // Use the new main function name

timeBased()

.everyDays(1)

.atHour(7) // You can adjust the hour (e.g., 6 for 6 AM)

.create();

Logger.log("Daily birthday reminder trigger created successfully.");

// Optional: Send a confirmation email that the trigger is set
MailApp.sendEmail(RECIPIENT_EMAIL, "Birthday Agent Setup Complete!", "Your daily two-stage

reminder app trigger has been created and will run every day between 7 AM and 8 AM.");

}

Jx*

* Diagnostic function for checking API key status.
*/

function testApiKey() {

Logger.log("--- Starting API Key Test ---");

const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY");

consturl=

" https://generativelanguage.googleapis.com/v1beta/models/${GEMINI_MODEL}.generateContent";
if (lapiKey) {

Logger.log("ERROR: GEMINI_API_KEY not found in Script Properties. Please add it.");

return;

}

const payload ={

contents: [{ parts: [{ text: "Explain why this test call should succeed in 3words." }] }],
|3

const options = getApiOptions(apiKey, payload);

try {

const response = UrlFetchApp.fetch(url, options);

const rawResponseText = response.getContentText();

if (response.getResponseCode() === 200) {
const data = JSON.parse(rawResponseText);
const generatedText = data.candidates?.[0]?.content?.parts?.[0]?.text?.trim() || "Could not extract

text.";

Logger.log("API TEST RESULT: SUCCESS!");

Logger.log(" Generated Text: "${generatedText}"");

MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test SUCCESS!", "The Gemini APl call succeeded.
The problem is likely in your spreadsheet data or configuration.");

}else{

Logger.log(® API TEST RESULT: FAILURE! HTTP Status: ${response.getResponseCode()}");
Logger.log(" RAW FAILURE RESPONSE: ${rawResponseText}");
MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test FAILED", " The Gemini API call failed with HTTP
Status ${response.getResponseCode()}. Check the Apps Script logs for the RAW FAILURE RESPONSE
to see the exact error message (e.g., invalid key, billing, or quota).”);

}

} catch (e) {

Logger.log(" API TEST EXCEPTION: ${e.toString()}");

MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test EXCEPTION", ~ A network or system error

prevented the API call. Exception: ${e.toString()}");

}

}
Logger.log("--- APl Key Test Complete ---");

}

