
Birthday Agent Code Module 2

/**

 * Global constant for the Gemini model to use.

 * gemini-2.5-flash is fast and perfect for this kind of creative text generation.

 */

const GEMINI_MODEL = "gemini-2.5-flash";

/**

 * The recipient email address for all notifications.

 */

const RECIPIENT_EMAIL = "CHANGE THIS TO YOUR EMAIL ADDRESS";

/**

 * --- MAIN ENTRY POINT (CALLED BY DAILY TRIGGER) ---

 * Checks for both gift reminders (14 days out) and birthday messages (today).

 */

function mainDailyCheck() {

 Logger.log("--- Starting Two-Stage Daily Check ---");

 const today = new Date();

 sendGiftReminders(today);

 sendBirthdayMessages(today);

 Logger.log("--- Daily Check Complete ---");

}

/**

 * Checks for birthdays exactly 14 days from today for Classifications 1 & 3,

 * generates gift suggestions, and sends a gift reminder email.

 * @param {Date} today The current date.

 */

function sendGiftReminders(today) {

 Logger.log("Starting Gift Reminder Check...");

 const spreadsheet = SpreadsheetApp.getActiveSpreadsheet();

 const sheet = spreadsheet.getSheetByName('Birthdays');

 if (!sheet) {

 Logger.log("ERROR: Sheet not found in sendGiftReminders.");

 return;

 }

 // Define the target date: 14 days from now

 const fourteenDaysOut = new Date(today);

 fourteenDaysOut.setDate(today.getDate() + 14);

 const targetMMDD = (fourteenDaysOut.getMonth() + 1).toString().padStart(2, '0') + '/' +

fourteenDaysOut.getDate().toString().padStart(2, '0');

 const currentYear = today.getFullYear();

 // Get data including the NEW 6th column (Last Gift Sent Year)

 const dataRange = sheet.getRange(2, 1, sheet.getLastRow() - 1, sheet.getLastColumn());

 const data = dataRange.getValues();

 const birthdaysDueGifts = [];

 // Columns: [Name, Birthday(1), Class(2), LastSentYear(3), Notes(4), LastGiftSentYear(5)]

 data.forEach((row, index) => {

 const [name, birthday, classification, , notes, lastGiftSentYear] = row;

 // Ensure the birthday column is formatted as a string MM/DD for comparison

 const birthdateString = birthday instanceof Date ?

 (birthday.getMonth() + 1).toString().padStart(2, '0') + '/' + birthday.getDate().toString().padStart(2,

'0') :

 String(birthday).trim();

 // Check 1: Is today 14 days before the birthday?

 const dateMatches = (birthdateString === targetMMDD);

 // Check 2: Is it Classification 1 or 3?

 const isPriority = (classification === 1 || classification === 3);

 // Check 3: Has the gift reminder not been sent this year?

 const notSentThisYear = (lastGiftSentYear !== currentYear);

 if (dateMatches && isPriority && notSentThisYear) {

 birthdaysDueGifts.push({

 name: name,

 classification: classification,

 notes: notes,

 rowIndex: index + 2 // Row in sheet

 });

 }

 });

 if (birthdaysDueGifts.length === 0) {

 Logger.log("No gift reminders due today.");

 return;

 }

 // --- Process and Send Gift Reminder Email ---

 let emailBody = `蔍蔎蔏蔐 **GIFT REMINDER: ${birthdaysDueGifts.length} BIRTHDAY(S) IN 2 WEEKS

(${targetMMDD})** 蔍蔎蔏蔐\n\n`;

 emailBody += "--- Gift Suggestions ---\n";

 const aiGiftPromises = [];

 birthdaysDueGifts.forEach(person => {

 emailBody += `\n**${person.name}** (${getClassificationLabel(person.classification)})\n`;

 emailBody += ` - Context: ${person.notes || 'None provided.'}\n`;

 aiGiftPromises.push(generateGiftSuggestions(person));

 });

 const generatedGifts = generateAllMessages(aiGiftPromises);

 emailBody += "\n\n--- AI-Generated Recommendations ---\n\n";

 generatedGifts.forEach(result => {

 emailBody += `## Gift Ideas for ${result.name}:\n`;

 emailBody += '--\n';

 emailBody += result.message;

 emailBody += '\n--\n\n';

 });

 MailApp.sendEmail({

 to: RECIPIENT_EMAIL,

 subject: `蔍蔎蔏蔐 2 Week Birthday Reminder: ${birthdaysDueGifts.length} Birthday(s) Coming Up!

(${targetMMDD})`,

 body: emailBody

 });

 Logger.log(`Successfully sent gift reminder email for ${birthdaysDueGifts.length} birthday(s).`);

 // Update the "Last Gift Sent Year" column (Column F, index 6)

 birthdaysDueGifts.forEach(person => {

 sheet.getRange(person.rowIndex, 6).setValue(currentYear);

 });

 Logger.log(`Successfully updated ${birthdaysDueGifts.length} rows for Last Gift Sent Year.`);

}

/**

 * Checks for birthdays exactly today, generates the AI message, and sends the final email.

 * @param {Date} today The current date.

 */

function sendBirthdayMessages(today) {

 Logger.log("Starting Birthday Message Check...");

 const spreadsheet = SpreadsheetApp.getActiveSpreadsheet();

 const sheet = spreadsheet.getSheetByName('Birthdays');

 if (!sheet) {

 Logger.log("ERROR: Sheet not found in sendBirthdayMessages.");

 return;

 }

 const todayMMDD = (today.getMonth() + 1).toString().padStart(2, '0') + '/' +

today.getDate().toString().padStart(2, '0');

 const currentYear = today.getFullYear();

 // Get data including the original 5 columns (Last Sent Year is column D, index 4)

 const dataRange = sheet.getRange(2, 1, sheet.getLastRow() - 1, sheet.getLastColumn());

 const data = dataRange.getValues();

 const birthdaysDueMessage = [];

 // Columns: [Name, Birthday(1), Class(2), LastSentYear(3), Notes(4), LastGiftSentYear(5)]

 data.forEach((row, index) => {

 const [name, birthday, classification, lastSentYear, notes,] = row;

 // Ensure the birthday column is formatted as a string MM/DD for comparison

 const birthdateString = birthday instanceof Date ?

 (birthday.getMonth() + 1).toString().padStart(2, '0') + '/' + birthday.getDate().toString().padStart(2,

'0') :

 String(birthday).trim();

 // Check 1: Is today the exact birthday?

 const dateMatches = (birthdateString === todayMMDD);

 // Check 2: Has the main birthday email not been sent this year? (Column D)

 const notSentThisYear = (lastSentYear !== currentYear);

 if (dateMatches && notSentThisYear) {

 birthdaysDueMessage.push({

 name: name,

 classification: classification,

 notes: notes,

 rowIndex: index + 2 // Row in sheet

 });

 }

 });

 if (birthdaysDueMessage.length === 0) {

 Logger.log("No birthday messages due today.");

 return;

 }

 // --- Process and Send Birthday Message Email ---

 let emailBody = `蔑蔒蔓蔔蔕蔖蔗蔘蔙 **BIRTHDAY MESSAGE ALERT:

${birthdaysDueMessage.length} BIRTHDAY(S)

TODAY!** 蔑蔒蔓蔔蔕蔖蔗蔘蔙\n\n`;

 emailBody += "--- AI-Generated Messages ---\n";

 const aiMessagePromises = [];

 birthdaysDueMessage.forEach(person => {

 aiMessagePromises.push(generateGeminiMessage(person));

 });

 const generatedMessages = generateAllMessages(aiMessagePromises);

 emailBody += "\n\n--- Messages Ready to Send ---\n\n";

 generatedMessages.forEach(result => {

 const person = birthdaysDueMessage.find(p => p.name === result.name);

 const classification = person ? person.classification : 0;

 const classificationLabel = getClassificationLabel(classification);

 emailBody += `## Message for ${result.name} (${classificationLabel}):\n`;

 emailBody += '--\n';

 emailBody += result.message;

 emailBody += '\n--\n';

 if (classification === 5) {

 emailBody += '\n*(Reflective message. Send with care.)*\n';

 } else {

 emailBody += '\n*(Ready to copy and paste!)*\n';

 }

 emailBody += '--\n\n';

 });

 MailApp.sendEmail({

 to: RECIPIENT_EMAIL,

 subject: `蔑蔒蔓蔔蔕蔖蔗蔘蔙 Birthday Alert! Send a Message to ${birthdaysDueMessage.map(p =>

p.name).join(', ')}

Today!`,

 body: emailBody

 });

 Logger.log(`Successfully sent birthday message email for ${birthdaysDueMessage.length}

birthday(s).`);

 // Update the "Last Sent Year" column (Column D, index 4)

 birthdaysDueMessage.forEach(person => {

 sheet.getRange(person.rowIndex, 4).setValue(currentYear);

 });

 Logger.log(`Successfully updated ${birthdaysDueMessage.length} rows for Last Sent Year.`);

}

/**

 * Helper function to find a person's classification by name.

 * (Not strictly necessary now, but good for debugging/future use)

 * @param {string} name

 * @param {Array<Object>} list

 * @returns {number | undefined}

 */

function getPersonClassification(name, list) {

 const person = list.find(p => p.name === name);

 return person ? person.classification : undefined;

}

/**

 * Reusable function to handle parallel API calls and error parsing.

 */

function generateAllMessages(promises) {

 const responses = [];

 promises.forEach(item => {

 const personName = item.name;

 let rawResponseText = null;

 let httpStatus = 0;

 try {

 const response = item.fetcher();

 httpStatus = response.getResponseCode();

 rawResponseText = response.getContentText();

 if (httpStatus !== 200) {

 Logger.log(`API FAILURE for ${personName}: Status ${httpStatus}. Raw Response:

${rawResponseText}`);

 let errorMessage = `API Call failed with HTTP Status ${httpStatus}. See logs for details.`;

 try {

 const errorData = JSON.parse(rawResponseText);

 errorMessage = `API Error (${httpStatus}): ${errorData.error?.message || 'Unknown API Error'}`;

 } catch (e) {

 errorMessage = `API Error (${httpStatus}): Raw response was not JSON. Server response:

${rawResponseText.substring(0, 100)}...`;

 }

 responses.push({

 name: personName,

 message: `AI generation failed. ${errorMessage}`

 });

 return;

 }

 const data = JSON.parse(rawResponseText);

 let message = "AI generation failed (no content found).";

 if (data.candidates && data.candidates[0] && data.candidates[0].content &&

data.candidates[0].content.parts) {

 message = data.candidates[0].content.parts[0].text.trim();

 }

 responses.push({ name: personName, message: message });

 } catch (e) {

 Logger.log(`SYSTEM EXCEPTION for ${personName}: ${e.toString()}`);

 responses.push({

 name: personName,

 message: `ERROR: Failed to generate content (System Exception). Details: ${e.message}`

 });

 }

 });

 return responses;

}

/**

 * Generates the specific prompt and prepares the API call structure for the message.

 */

function generateGeminiMessage(person) {

 const { name, classification, notes } = person;

 let systemInstruction = "";

 let userQuery = "";

 const safeNotes = String(notes || "no specific interests").replace(/"/g, "'");

 if (classification === 5) {

 systemInstruction = `You are a thoughtful and sensitive writer. Write a short, reflective, and

touching message (2-3 sentences max) that focuses on gratitude, positive memories, and the

enduring impact of the person named ${name}. Do not mention death or the term 'deceased'. The

tone should be gentle and uplifting, perfect for private reflection.`;

 userQuery = `Write a reflective message about ${name} based on the following context:

"${safeNotes}"`;

 } else {

 const classificationText = getClassificationLabel(classification);

 systemInstruction = `You are a creative and warm friend. Generate a unique, personalized birthday

message for ${name}. The message should be warm, concise (2-3 sentences), and suitable for a

${classificationText}. Use the provided context to make it specific and avoid generic phrases like 'I

hope you have a great day.' Just provide the message text, nothing else.`;

 userQuery = `Write a personalized birthday wish for ${name}. Context/Interests: "${safeNotes}".`;

 }

 const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

 const url =

`https://generativelanguage.googleapis.com/v1beta/models/${GEMINI_MODEL}:generateContent`;

 const payload = {

 contents: [{ parts: [{ text: userQuery }] }],

 systemInstruction: { parts: [{ text: systemInstruction }] },

 generationConfig: {

 temperature: 0.8,

 },

 };

 const options = getApiOptions(apiKey, payload);

 const apiCallFunction = () => UrlFetchApp.fetch(url, options);

 return { name: name, fetcher: apiCallFunction };

}

/**

 * Generates the specific prompt and prepares the API call structure for gift suggestions.

 */

function generateGiftSuggestions(person) {

 const { name, classification, notes } = person;

 const safeNotes = String(notes || "general interests").replace(/"/g, "'");

 const classificationText = getClassificationLabel(classification);

 const systemInstruction = `You are an expert gift advisor. Provide three unique and thoughtful gift

ideas for a person named ${name} who is a ${classificationText}. The suggestions should be practical,

creative, and directly based on their listed interests. Format the response as a bulleted list with a brief

description for each idea.`;

 const userQuery = `Generate three gift suggestions for ${name}. Their interests/context are:

"${safeNotes}".`;

 const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

 const url =

`https://generativelanguage.googleapis.com/v1beta/models/${GEMINI_MODEL}:generateContent`;

 const payload = {

 contents: [{ parts: [{ text: userQuery }] }],

 systemInstruction: { parts: [{ text: systemInstruction }] },

 generationConfig: {

 temperature: 0.7, // Slightly lower temperature for practical suggestions

 },

 };

 const options = getApiOptions(apiKey, payload);

 const apiCallFunction = () => UrlFetchApp.fetch(url, options);

 return { name: name, fetcher: apiCallFunction };

}

/**

 * Creates the standard UrlFetchApp options object.

 */

function getApiOptions(apiKey, payload) {

 return {

 method: 'post',

 contentType: 'application/json',

 headers: { 'x-goog-api-key': apiKey },

 payload: JSON.stringify(payload),

 muteHttpExceptions: true

 };

}

/**

 * Helper function to return the full classification name.

 */

function getClassificationLabel(classification) {

 switch (classification) {

 case 1: return "Close Family";

 case 2: return "Extended Family";

 case 3: return "Close Friend";

 case 4: return "Friend";

 case 5: return "Deceased (Reflection)";

 default: return "Unknown Category";

 }

}

/**

 * Sets up a daily time-driven trigger for the main function.

 * RUN THIS FUNCTION *ONCE* TO START THE AUTOMATION.

 */

function createDailyTrigger() {

 // Delete any existing triggers to prevent duplicates

 const triggers = ScriptApp.getProjectTriggers();

 triggers.forEach(trigger => {

 // IMPORTANT: Change the handler function name to the new main entry point

 if (trigger.getHandlerFunction() === 'mainDailyCheck') {

 ScriptApp.deleteTrigger(trigger);

 }

 });

 // Create a new daily trigger (runs between 7 AM and 8 AM)

 ScriptApp.newTrigger('mainDailyCheck') // Use the new main function name

 .timeBased()

 .everyDays(1)

 .atHour(7) // You can adjust the hour (e.g., 6 for 6 AM)

 .create();

 Logger.log("Daily birthday reminder trigger created successfully.");

 // Optional: Send a confirmation email that the trigger is set

 MailApp.sendEmail(RECIPIENT_EMAIL, "Birthday Agent Setup Complete!", "Your daily two-stage

reminder app trigger has been created and will run every day between 7 AM and 8 AM.");

}

/**

 * Diagnostic function for checking API key status.

 */

function testApiKey() {

 Logger.log("--- Starting API Key Test ---");

 const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

 const url =

`https://generativelanguage.googleapis.com/v1beta/models/${GEMINI_MODEL}:generateContent`;

 if (!apiKey) {

 Logger.log("ERROR: GEMINI_API_KEY not found in Script Properties. Please add it.");

 return;

 }

 const payload = {

 contents: [{ parts: [{ text: "Explain why this test call should succeed in 3 words." }] }],

 };

 const options = getApiOptions(apiKey, payload);

 try {

 const response = UrlFetchApp.fetch(url, options);

 const rawResponseText = response.getContentText();

 if (response.getResponseCode() === 200) {

 const data = JSON.parse(rawResponseText);

 const generatedText = data.candidates?.[0]?.content?.parts?.[0]?.text?.trim() || "Could not extract

text.";

 Logger.log("API TEST RESULT: SUCCESS!");

 Logger.log(`Generated Text: "${generatedText}"`);

 MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test SUCCESS!", "The Gemini API call succeeded.

The problem is likely in your spreadsheet data or configuration.");

 } else {

 Logger.log(`API TEST RESULT: FAILURE! HTTP Status: ${response.getResponseCode()}`);

 Logger.log(`RAW FAILURE RESPONSE: ${rawResponseText}`);

 MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test FAILED", `The Gemini API call failed with HTTP

Status ${response.getResponseCode()}. Check the Apps Script logs for the RAW FAILURE RESPONSE

to see the exact error message (e.g., invalid key, billing, or quota).`);

 }

 } catch (e) {

 Logger.log(`API TEST EXCEPTION: ${e.toString()}`);

 MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test EXCEPTION", `A network or system error

prevented the API call. Exception: ${e.toString()}`);

 }

 }

 Logger.log("--- API Key Test Complete ---");

}

