A Guide to Building a Complete Al Birthday Agent

This is the complete, start-to-finish guide for setting up your Two-Stage Al-Powered
Birthday Notification System using Google Sheets, Google Apps Script, and the
Gemini API.

We will do it in 2 build Modules. In Module 1 we will create an automation app that
generates a unique, context-aware message for each person, and sends a single,
consolidated reminder email directly to your inbox on the person’s birthday. In Module 2
we will upgrade this to a Birthday Agent that also send gift suggestions 2 weeks before
the birthday.

Module 1
The System Overview: Your Daily Sentiment Engine

This project, which we'll call the Al-Powered Birthday Notification System, relies on
three core components:

1. Google Sheets (The Data): Where you store the person's name, birthday, and
personalized notes (context).

2. Google Apps Script (The Engine): A JavaScript environment that runson a
schedule, reads your Sheet, and handles the emailing logic.

3. Gemini API (The Intelligence): Generates a custom, heartfelt message using the
context provided in your Sheet.

Phase 1: Data Foundation (Google Sheets)

Your spreadsheet is the brain of the operation, holding all the data necessary to trigger
personalized messages.

Step 1: Create and Name Your Sheet

1. Goto Google Sheets and create a new spreadsheet. Name it Birthday Al
Reminder.

2. Rename the first tab (sheet) to exactly: Birthdays. This name must match the
code exactly!

Step 2: Define and Input Your Data

Enter the following column headers in the first row (Row 1) and populate the data.

ColumnHeader Example Value Purpose
A Name Jane Doe The person's full name.
Birthday The month and day (MUST include the leading
B (MM/DD) 11/25 zero).
C Classification 3 A number for the relationship category.

The code manages this! Keeps track of when
D Last Sent Year 2024 the last email was sent.

Loves gardening and has apet Context used by the Al to create a unique

E Notes/Context cat named Miso. message and gift suggestions
Last Gift Sent Tracks if the gift reminder was sent this year.
F Year 2024 (this is for Module 2)

Classification Key (Column C) for Message Tone:
e 1:Close Family
e 2:Extended Family
e 3:Close Friends
e 4:Friends

o 5:Deceased (Triggers a reflective, gentle message)

Phase 2: Code Integration (Google Apps Script)

We will use Google Apps Script to write the automation engine.

Step 3: Open Apps Script

1.

In your Birthday Al Reminder spreadsheet, go to Extensions > Apps Script.

2. This opens the code editor. Delete any placeholder text in the Code.gs file.

Step 4: Paste the Complete Code (in attached document)

Copy the entire working script from the Birthday Automation Code PDF and pasteitinto
the empty Code.gs file.

Important: Before saving, find the line const RECIPIENT_EMAIL ="CHANGE THIS TO
YOUR EMAIL ADDRESS"; and replace the placeholder with your actual email address.

Step 5: Set Your Project Time Zone

1.

4.

In the Google Apps Script editor, look for the Project Settings (gearicon %) on
the left sidebar.

Under the General settings section, you will see a field labeled Time zone.

Click on the current time zone setting and select your desired time zone from the
dropdown menu. You must choose a specific time zone (like
America/New_York or Europe/London) for the daily trigger to fire at the correct
local time (e.g., 7:00 AM to 8:00 AM in your chosen zone).

Once selected, the time zone is automatically saved.

Phase 3: Configuration (APl Key & Authorization)

This phase connects your script to the Gemini Al model.

Step 6: Get Your Gemini APl Key

1.

2.

Go to Google Al Studio (search for "Gemini APl key").

Follow the prompts to select or create a Google Cloud Project to house your
key.

Click the button to "Create API key."

Copy the entire key string immediately.

Step 7: Paste the APl Key into Script Properties

1.

In your Apps Script editor, go to the Project Settings (gear icon) on the left
sidebar.

Scroll down to Script properties and click Add script property.
For Property, enter: GEMINI_API_KEY
For Value, paste the entire key you copied in Step 5.

Click Save script properties.

Step 8: Initial Authorization (Grant Permissions)

The script needs permission to read your sheet, connect to the internet (Gemini API),

and send emails.

1.

In the Apps Script editor, select the function sendBirthdayReminders from the
dropdown menu at the top.

Click the Run button (triangle icon).
A pop-up will appear asking you to Review permissions. Click it.

Follow the prompts to select your Google account, click Advanced, then Go to
[Project Name] (unsafe), and finally Allow all permissions (email, sheet, and
external connection).

Phase 4: Launch and Automation (The Daily Trigger)

This final step schedules your app to run every day.

Step 9: Create the Daily Trigger

1.

In the Apps Script editor, select the function createDailyTrigger from the
dropdown menu at the top.

2. Click the Run button.

Once executed, this function sets up the schedule. Your app will now automatically run
every day between 7:00 AM and 8:00 AM to check for birthdays and send you a
consolidated email with the Al-generated messages!

Troubleshooting & Debugging

If your email arrives but the Al message says "Al message generation failed," this is
usually a hidden API configuration issue.

1. Run the testApiKey function: In the Apps Script editor, switch the function
selector to testApiKey and click Run.

2. Check Logs: Go to Execution Logs and look for API TEST RESULT: SUCCESS!. If
it says FAILURE, the issue is the key, billing, or quota.

3. Final Fix: If the test key works, the issue is often a slight API request structure
problem. Since we fixed that, running the script again should resolve it. If the
issue persists, carefully verify that your GEMINI_API_KEY in the Script Properties
is active and correct.

4. Note you can open Gemini and use it to debug any issues

You now have a fantastic automated system: the Al-Powered Birthday Notification
System. It runs daily, checks your spreadsheet, and generates a personalized birthday
message using the Gemini API.

Module 2

We can transform this passive reporter into a simple Al Agent that solves the next most
common problem: What gift should | buy?

By giving the system a second, complex task, generating thoughtful gift
recommendations based on the person's interests we dramatically increase its value
and push it into agent territory.

We're moving beyond simple automation. This guide helps you build a sophisticated Al
Agent, a tool that actively manages your key relationships by performing two critical,
contextual tasks on two different days: sending gift suggestions 14 days early, and
providing a personalized message on the birthday.

This is the complete, start-to-finish guide for upgrading to your Two-Stage Al-Powered
Birthday Notification System using Google Sheets, Google Apps Script, and the
Gemini API.

Phase 1: Data Foundation

You built the spreadsheet in Module 1

Classification Key (Column C) and Agent Logic:

e 1 (Close Family) & 3 (Close Friends): Receives Al Gift Suggestion (14 Days
Early) + Al Message (On Birthday).

o 2 (Extended Family) & 4 (Friends): Receives Al Message Only (On Birthday).

o 5 (Deceased): Receives Al Reflective Message Only (On Birthday).

Phase 2: Code Integration (Google Apps Script)

This is the logic that executes the two-stage check and the two parallel API calls.

Step 10: Open Apps Script
1. Inyour Birthday Al Reminder spreadsheet, go to Extensions > Apps Script.

2. This opens the code editor. Delete any placeholder text in the Code.gs file.

Step 11: Paste the Complete Agent Code

Copy the complete, working script from the Birthday Agent Code PDF and pasteitinto
the empty Code.gs file.

Important: Before saving, find the line const RECIPIENT_EMAIL ="CHANGE THIS TO
YOUR EMAIL ADDRESS"; and replace the placeholder with your actual email address.

$$Insert the complete " birthday-notifier-two-stage-agent.js" file content here$$

Phase 3: Launch and Automation (The Daily Trigger)

This final step schedules your Agent to run every day.

Step 12: Create the Daily Trigger (CRUCIAL STEP)

Since we renamed the main scheduler function to mainDailyCheck() to handle the two-
stage logic, you must run the trigger setup function again to update your schedule.

1. Inthe Apps Script editor, select the function createDailyTrigger from the
dropdown menu at the top.

2. Click the Run button.

This will delete any old triggers and set the script to run the mainDailyCheck function
every day between 7:00 AM and 8:00 AM. Your Agent is now fully operational!

Troubleshooting & Debugging

o "Al generation failed": The API key or connection failed. Run the testApiKey
function (selectit in the dropdown and click Run) and check the logs. If it reports
failure, re-verify your key.

e "No Gift Suggestions": Check the Classification (Column C) in your sheet. Only
1 (Close Family) and 3 (Close Friends) receive gift ideas.

o "l got the gift email, but not the birthday message": Check that you entered a
date into the Last Sent Year column (D) for the birthday message to be sent,
and a date into the Last Gift Sent Year (F) for the gift suggestion to be sent. The
Agent needs to know when the last event occurred for both.

e Note you can open Gemini and use it to debug any issues

And there you have it - a complete Birthday Agent.

