
Birthday Automation Code Module 1

/**

 * Global constant for the Gemini model to use.

 * gemini-2.5-flash is fast and perfect for this kind of creative text generation.

 */

const GEMINI_MODEL = "gemini-2.5-flash";

/**

 * The recipient email address for all birthday notifications.

 * CHANGE THIS TO YOUR EMAIL ADDRESS.

 */

const RECIPIENT_EMAIL = "CHANGE THIS TO YOUR EMAIL ADDRESS";

/**

 * Main function run daily by a time-driven trigger.

 * It checks the spreadsheet for today's birthdays, generates AI messages,

 * and sends a single consolidated email if any birthdays are found.

 */

function sendBirthdayReminders() {

 Logger.log("Starting birthday check...");

 // 1. Setup Spreadsheet and Time Variables

 const spreadsheet = SpreadsheetApp.getActiveSpreadsheet();

 // NOTE: If you changed the sheet name in Google Sheets, update 'Birthdays' below.

 const sheet = spreadsheet.getSheetByName('Birthdays');

 if (!sheet) {

 MailApp.sendEmail(RECIPIENT_EMAIL, "BIRTHDAY REMINDER ERROR", "Could not find the
'Birthdays' sheet. Please check the sheet name.");

 return;

 }

 // Get all data, excluding the header row

 const dataRange = sheet.getRange(2, 1, sheet.getLastRow() - 1, sheet.getLastColumn());

 const data = dataRange.getValues();

 const today = new Date();

 const todayMMDD = (today.getMonth() + 1).toString().padStart(2, '0') + '/' +
today.getDate().toString().padStart(2, '0');

 const currentYear = today.getFullYear();

 // Array to hold today's birthday details

 const todaysBirthdays = [];

 // 2. Filter for today's birthdays and check the last sent year

 data.forEach((row, index) => {

 // Columns: [Name, Birthday (MM/DD), Classification, Last Sent Year, Notes/Context]

 const [name, birthday, classification, lastSentYear, notes] = row;

 // Ensure the birthday column is formatted as a string MM/DD for comparison

 const birthdateString = birthday instanceof Date ?

 (birthday.getMonth() + 1).toString().padStart(2, '0') + '/' + birthday.getDate().toString().padStart(2,
'0') :

 String(birthday).trim();

 // Check if the date matches today (MM/DD) and if an email hasn't been sent this year

 if (birthdateString === todayMMDD && lastSentYear !== currentYear) {

 // Add data for processing and update the sheet to prevent resending today

 todaysBirthdays.push({

 name: name,

 classification: classification,

 notes: notes,

 rowIndex: index + 2 // +2 because the array is 0-indexed and data starts at row 2

 });

 }

 });

 // 3. Process Birthdays and Send Email

 if (todaysBirthdays.length === 0) {

 Logger.log("No birthdays today. No email sent.");

 return;

 }

 // --- Start Email Content Construction ---

 let emailBody = `薋薌薍薎薏薐薓薔薕薖薑薒薗 **TODAY'S BIRTHDAY REMINDERS (${todayMMDD})** 薋薌薍薎薏薐薓薔薕薖薑薒薗\n\n`;

 emailBody += "--- Summary ---\n";

 const aiMessagePromises = [];

 todaysBirthdays.forEach(person => {

 const classificationText = getClassificationLabel(person.classification);

 emailBody += `\n**${person.name}**\n`;

 emailBody += ` - **Category:** ${classificationText} (${person.classification})\n`;

 emailBody += ` - **Context:** ${person.notes || 'None provided.'}\n`;

 // Queue up AI message generation (runs sequentially)

 aiMessagePromises.push(generateGeminiMessage(person));

 });

 // 4. Wait for all AI messages to be generated

 Logger.log(`Generating ${aiMessagePromises.length} unique AI messages...`);

 // The structure of this call now expects an array of {name, fetcher} objects

 const generatedMessages = generateAllMessages(aiMessagePromises);

 emailBody += "\n\n--- AI-Generated Messages ---\n\n";

 // 5. Integrate AI Messages into the email body

 generatedMessages.forEach(result => {

 const { name, message } = result;

 emailBody += `## Message for ${name}:\n`;

 emailBody += '--\n';

 emailBody += message;

 emailBody += '\n--\n\n';

 });

 // 6. Send the final consolidated email

 MailApp.sendEmail({

 to: RECIPIENT_EMAIL,

 subject: `蔑蔒蔓蔔蔕蔖蔗蔘蔙 Birthday Alert: ${todaysBirthdays.length} Birthday(s) Today! (${todayMMDD})`,

 body: emailBody

 });

 Logger.log(`Successfully sent email with ${todaysBirthdays.length} birthday(s).`);

 // 7. Update the "Last Sent Year" column in the spreadsheet

 const rowsToUpdate = todaysBirthdays.map(p => p.rowIndex);

 rowsToUpdate.forEach(rowIndex => {

 sheet.getRange(rowIndex, 4).setValue(currentYear); // Column D (index 4) is Last Sent Year

 });

 Logger.log(`Successfully updated ${rowsToUpdate.length} rows to ${currentYear}.`);

}

/**

 * Uses a basic sequential approach with UrlFetchApp to run message generations.

 * It iterates over an array of { name, fetcher } objects.

 * @param {Array<{name: string, fetcher: Function}>} promises An array of objects containing the
person's name and the function to execute the API call.

 * @returns {Array<Object>} Array of results { name, message }.

 */

function generateAllMessages(promises) {

 const responses = [];

 // promises is an array of { name: string, fetcher: Function } objects

 promises.forEach(item => {

 const personName = item.name;

 let rawResponseText = null;

 let httpStatus = 0;

 try {

 const response = item.fetcher();

 httpStatus = response.getResponseCode();

 rawResponseText = response.getContentText();

 // Check for non-200 error code first

 if (httpStatus !== 200) {

 // This is the true API error we need to log

 Logger.log(`API FAILURE for ${personName}: Status ${httpStatus}. Raw Response:
${rawResponseText}`);

 // Attempt to parse the error message if it's JSON (most 4xx/5xx errors are)

 let errorMessage = `API Call failed with HTTP Status ${httpStatus}. See logs for details.`;

 try {

 const errorData = JSON.parse(rawResponseText);

 errorMessage = `API Error (${httpStatus}): ${errorData.error?.message || 'Unknown API Error'}`;

 } catch (e) {

 // If the error response is not JSON, just include the raw text

 errorMessage = `API Error (${httpStatus}): Raw response was not JSON. Server response:
${rawResponseText.substring(0, 100)}...`;

 }

 responses.push({

 name: personName,

 message: `AI message generation failed. ${errorMessage}`

 });

 return; // Move to the next person

 }

 // SUCCESS (HTTP 200) logic:

 const data = JSON.parse(rawResponseText);

 let message = "AI message generation failed (no content found).";

 if (data.candidates && data.candidates[0] && data.candidates[0].content &&
data.candidates[0].content.parts) {

 message = data.candidates[0].content.parts[0].text.trim();

 }

 responses.push({ name: personName, message: message });

 } catch (e) {

 // Handles rare network/system exceptions (not typical API key errors)

 Logger.log(`SYSTEM EXCEPTION for ${personName}: ${e.toString()}`);

 responses.push({

 name: personName,

 message: `ERROR: Failed to generate message (System Exception). Details: ${e.message}`

 });

 }

 });

 return responses;

}

/**

 * Generates the specific prompt and prepares the API call structure.

 * Returns an object containing the person's name and a function to execute the UrlFetchApp.

 * @param {Object} person The person object with name, classification, and notes.

 * @returns {{name: string, fetcher: Function}} An object with the person's name and the fetcher
function.

 */

function generateGeminiMessage(person) {

 const { name, classification, notes } = person;

 let systemInstruction = "";

 let userQuery = "";

 // Ensure notes is a safe string for JSON inclusion

 const safeNotes = String(notes || "no specific interests").replace(/"/g, "'");

 if (classification === 5) {

 // Deceased (Reflective Message)

 systemInstruction = `You are a thoughtful and sensitive writer. Write a short, reflective, and
touching message (2-3 sentences max) that focuses on gratitude, positive memories, and the
enduring impact of the person named ${name}. Do not mention death or the term 'deceased'. The
tone should be gentle and uplifting, perfect for private reflection.`;

 userQuery = `Write a reflective message about ${name} based on the following context:
"${safeNotes}"`;

 } else {

 // All other active classifications (1-4)

 const classificationText = getClassificationLabel(classification);

 systemInstruction = `You are a creative and warm friend. Generate a unique, personalized birthday
message for ${name}. The message should be warm, concise (2-3 sentences), and suitable for a
${classificationText}. Use the provided context to make it specific and avoid generic phrases like 'I
hope you have a great day.' Just provide the message text, nothing else.`;

 userQuery = `Write a personalized birthday wish for ${name}. Context/Interests: "${safeNotes}".`;

 }

 // Add diagnostic log for the exact query being sent

 Logger.log(`Prompt for ${name} (Classification ${classification}): ${userQuery}`);

 const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

 const url =
`https://generativelanguage.googleapis.com/v1beta/models/${GEMINI_MODEL}:generateContent`;

 const payload = {

 contents: [{ parts: [{ text: userQuery }] }],

 systemInstruction: { parts: [{ text: systemInstruction }] },

 // Correct API field name

 generationConfig: {

 temperature: 0.8, // Use a higher temperature for creative, unique messages

 // maxOutputTokens: 200 // Optional: limit length

 },

 };

 const options = {

 method: 'post',

 contentType: 'application/json',

 headers: { 'x-goog-api-key': apiKey },

 payload: JSON.stringify(payload),

 muteHttpExceptions: true // Required to capture non-200 responses

 };

 // Return a function that executes the call. We execute this later in generateAllMessages.

 const apiCallFunction = () => {

 // Executes the API call

 return UrlFetchApp.fetch(url, options);

 };

 // Return the name and the fetcher function

 return { name: name, fetcher: apiCallFunction };

}

/**

 * Helper function to return the full classification name.

 * @param {number} classification The classification number (1-5).

 * @returns {string} The descriptive label.

 */

function getClassificationLabel(classification) {

 switch (classification) {

 case 1: return "Close Family";

 case 2: return "Extended Family";

 case 3: return "Close Friend";

 case 4: return "Friend";

 case 5: return "Deceased (Reflection)";

 default: return "Unknown Category";

 }

}

/**

 * Sets up a daily time-driven trigger for the main function.

 * RUN THIS FUNCTION *ONCE* TO START THE AUTOMATION.

 */

function createDailyTrigger() {

 // Delete any existing triggers to prevent duplicates

 const triggers = ScriptApp.getProjectTriggers();

 triggers.forEach(trigger => {

 if (trigger.getHandlerFunction() === 'sendBirthdayReminders') {

 ScriptApp.deleteTrigger(trigger);

 }

 });

 // Create a new daily trigger (runs between 7 AM and 8 AM)

 ScriptApp.newTrigger('sendBirthdayReminders')

 .timeBased()

 .everyDays(1)

 .atHour(7) // You can adjust the hour (e.g., 6 for 6 AM)

 .create();

 Logger.log("Daily birthday reminder trigger created successfully.");

 // Optional: Send a confirmation email that the trigger is set

 MailApp.sendEmail(RECIPIENT_EMAIL, "Birthday App Setup Complete!", "Your daily birthday
reminder app trigger has been created and will run every day between 7 AM and 8 AM.");

}

/**

 * NEW DIAGNOSTIC FUNCTION: Tests the API key validity directly.

 * Run this function and check the logs for the outcome.

 */

function testApiKey() {

 Logger.log("--- Starting API Key Test ---");

 const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY');

 const url =
`https://generativelanguage.googleapis.com/v1beta/models/${GEMINI_MODEL}:generateContent`;

 if (!apiKey) {

 Logger.log("ERROR: GEMINI_API_KEY not found in Script Properties. Please add it.");

 return;

 }

 const payload = {

 contents: [{ parts: [{ text: "Explain why this test call should succeed in 3 words." }] }],

 };

 const options = {

 method: 'post',

 contentType: 'application/json',

 headers: { 'x-goog-api-key': apiKey },

 payload: JSON.stringify(payload),

 muteHttpExceptions: true

 };

 try {

 const response = UrlFetchApp.fetch(url, options);

 const rawResponseText = response.getContentText();

 // Check for success (200 OK)

 if (response.getResponseCode() === 200) {

 const data = JSON.parse(rawResponseText);

 const generatedText = data.candidates?.[0]?.content?.parts?.[0]?.text?.trim() || "Could not extract
text.";

 Logger.log("API TEST RESULT: SUCCESS!");

 Logger.log(`Generated Text: "${generatedText}"`);

 MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test SUCCESS!", "The Gemini API call succeeded.
The problem is likely in your spreadsheet data or configuration.");

 } else {

 // Log failure response for diagnosis

 Logger.log(`API TEST RESULT: FAILURE! HTTP Status: ${response.getResponseCode()}`);

 Logger.log(`RAW FAILURE RESPONSE: ${rawResponseText}`);

 MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test FAILED", `The Gemini API call failed with HTTP
Status ${response.getResponseCode()}. Check the Apps Script logs for the RAW FAILURE RESPONSE
to see the exact error message (e.g., invalid key, billing, or quota).`);

 }

 } catch (e) {

 Logger.log(`API TEST EXCEPTION: ${e.toString()}`);

 MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test EXCEPTION", `A network or system error
prevented the API call. Exception: ${e.toString()}`);

 }

 Logger.log("--- API Key Test Complete ---");

}

