Birthday Automation Code Module 1

Jx*
* Global constant for the Gemini model to use.

* gemini-2.5-flash is fast and perfect for this kind of creative text generation.
*/

const GEMINI_MODEL ="gemini-2.5-flash";

/**

*The recipient email address for all birthday notifications.
* CHANGE THIS TO YOUR EMAIL ADDRESS.
*/

const RECIPIENT_EMAIL = "CHANGE THIS TO YOUR EMAIL ADDRESS";

Jx*
* Main function run daily by a time-driven trigger.

* It checks the spreadsheet for today's birthdays, generates Al messages,
* and sends a single consolidated email if any birthdays are found.

*/

function sendBirthdayReminders() {

Logger.log("Starting birthday check...");

// 1. Setup Spreadsheet and Time Variables
const spreadsheet = SpreadsheetApp.getActiveSpreadsheet();
// NOTE: If you changed the sheet name in Google Sheets, update 'Birthdays' below.

const sheet = spreadsheet.getSheetByName('Birthdays');

if (Isheet) {

MailApp.sendEmail(RECIPIENT_EMAIL, "BIRTHDAY REMINDER ERROR", "Could not find the
'Birthdays' sheet. Please check the sheet name.");

return;

// Get all data, excluding the header row

const dataRange = sheet.getRange(2, 1, sheet.getLastRow() - 1, sheet.getLastColumn());
const data = dataRange.getValues();

const today = new Date();

const todayMMDD = (today.getMonth() + 1).toString().padStart(2, '0') + '/ +
today.getDate().toString().padStart(2, '0');

const currentYear = today.getFullYear();

// Array to hold today's birthday details

const todaysBirthdays =[];

/1 2. Filter for today's birthdays and check the last sent year
data.forEach((row, index) =>{
// Columns: [Name, Birthday (MM/DD), Classification, Last Sent Year, Notes/Context]

const [name, birthday, classification, lastSentYear, notes] = row;

// Ensure the birthday column is formatted as a string MM/DD for comparison
const birthdateString = birthday instanceof Date ?

(birthday.getMonth() + 1).toString().padStart(2, '0") + '/' + birthday.getDate().toString().padStart(2,
IOI) :

String(birthday).trim();

// Check if the date matches today (MM/DD) and if an email hasn't been sent this year
if (birthdateString ===todayMMDD && lastSentYear !== currentYear) {
// Add data for processing and update the sheet to prevent resending today
todaysBirthdays.push({
name: name,
classification: classification,

notes: notes,

rowlndex: index + 2 // +2 because the array is 0-indexed and data starts at row 2

/1 3. Process Birthdays and Send Email
if (todaysBirthdays.length === 0) {
Logger.log("No birthdays today. No email sent.");

return;

}

// --- Start Email Content Construction ---

let emailBody = * & **TODAY'S BIRTHDAY REMINDERS (${todayMMDD})** &=\n\n";
emailBody +="--- Summary ---\n";

const aiMessagePromises =[];

todaysBirthdays.forEach(person => {
const classificationText = getClassificationLabel(person.classification);
emailBody += "\n**${person.name}**\n";
emailBody += " - **Category:** ${classificationText} (${person.classification})\n";

emailBody += " - **Context:** ${person.notes || 'None provided.\n";

// Queue up Al message generation (runs sequentially)

aiMessagePromises.push(generateGeminiMessage(person));

D

/1 4. Wait for all Al messages to be generated
Logger.log(" Generating ${aiMessagePromises.length} unique Al messages...");
// The structure of this call now expects an array of {name, fetcher} objects

const generatedMessages = generateAllMessages(aiMessagePromises);

emailBody +="\n\n--- Al-Generated Messages ---\n\n";

/1 5. Integrate Al Messages into the email body
generatedMessages.forEach(result =>{
const { name, message } = result;

emailBody += " ## Message for ${name}:\n";

emailBody +="---------mmo - - \n';
emailBody += message;
emailBody +="\N-------mmmm \n\n';

D

// 6. Send the final consolidated email
MailApp.sendEmail({

to: RECIPIENT_EMAIL,

subject: * == Birthday Alert: ${todaysBirthdays.length} Birthday(s) Today! (${todayMMDD})",

body: emailBody
1;

Logger.log(" Successfully sent email with ${todaysBirthdays.length} birthday(s).");

// 7. Update the "Last Sent Year" column in the spreadsheet
const rowsToUpdate = todaysBirthdays.map(p => p.rowlndex);
rowsToUpdate.forEach(rowlndex => {

sheet.getRange(rowlndex, 4).setValue(currentYear); // Column D (index 4) is Last Sent Year

D

Logger.log(" Successfully updated ${rowsToUpdate.length} rows to ${currentYear}.");

}

/**

* Uses a basic sequential approach with UrlFetchApp to run message generations.

* |t iterates over an array of { name, fetcher } objects.

* @param {Array<{name: string, fetcher: Function}>} promises An array of objects containing the
person's name and the function to execute the APl call.

* @returns {Array<Object>} Array of results { name, message }.
*/
function generateAllMessages(promises) {
const responses = [];
// promises is an array of { name: string, fetcher: Function } objects
promises.forEach(item => {
const personName = item.name;
let rawResponseText = null;

let httpStatus = 0;

try {

const response = item.fetcher();
httpStatus = response.getResponseCode();

rawResponselext = response.getContentText();

// Check for non-200 error code first
if (httpStatus !==200) {
// This is the true APl error we need to log

Logger.log(" API FAILURE for ${personName}: Status ${httpStatus}. Raw Response:
${rawResponseText}");

// Attempt to parse the error message if it's JSON (most 4xx/5xx errors are)
let errorMessage = " API Call failed with HTTP Status ${httpStatus}. See logs for details.";
try {
const errorData = JSON.parse(rawResponseText);
errorMessage = ~ API Error (${httpStatus}): ${errorData.error?.message || 'Unknown API Error'}";
} catch (e){

// If the error response is not JSON, justinclude the raw text

errorMessage = ~ API Error (${httpStatus}): Raw response was not JSON. Server response:
${rawResponseText.substring(0, 100)}...";

}

responses.push({

name: personName,

message: ~ Al message generation failed. ${errorMessage}’
};
return; // Move to the next person

}

// SUCCESS (HTTP 200) logic:

const data = JSON.parse(rawResponseText);

let message = "Al message generation failed (no content found).";

if (data.candidates && data.candidates[0] && data.candidates[0].content &&
data.candidates[0].content.parts) {

message = data.candidates[0].content.parts[0].text.trim();

}

responses.push({ name: personName, message: message });

} catch (e) {
// Handles rare network/system exceptions (not typical APl key errors)
Logger.log(® SYSTEM EXCEPTION for ${personName}: ${e.toString()}");
responses.push({
name: personName,

message: “ ERROR: Failed to generate message (System Exception). Details: ${e.message}’

return responses;

/**

* Generates the specific prompt and prepares the API call structure.
* Returns an object containing the person's name and a function to execute the UrlFetchApp.
* @param {Object} person The person object with name, classification, and notes.

* @returns {{name: string, fetcher: Function}} An object with the person's name and the fetcher
function.

*/
function generateGeminiMessage(person) {
const { name, classification, notes } = person;

let systeminstruction ="";

let userQuery ="";

// Ensure notes is a safe string for JSON inclusion

const safeNotes = String(notes || "no specific interests").replace(/"/g, "");

if (classification === 5) {
// Deceased (Reflective Message)

systemlnstruction = " You are a thoughtful and sensitive writer. Write a short, reflective, and
touching message (2-3 sentences max) that focuses on gratitude, positive memories, and the
enduring impact of the person named ${name}. Do not mention death or the term 'deceased'. The
tone should be gentle and uplifting, perfect for private reflection. " ;

userQuery =~ Write a reflective message about ${name} based on the following context:
"${safeNotes}"";

}else{
/1 All other active classifications (1-4)
const classificationText = getClassificationLabel(classification);

systemlinstruction = ~ You are a creative and warm friend. Generate a unique, personalized birthday
message for ${name}. The message should be warm, concise (2-3 sentences), and suitable for a
${classificationText}. Use the provided context to make it specific and avoid generic phrases like 'l
hope you have a great day.' Just provide the message text, nothing else. " ;

userQuery = " Write a personalized birthday wish for ${name}. Context/Interests: "${safeNotes}".";

// Add diagnostic log for the exact query being sent

Logger.log(" Prompt for ${name} (Classification ${classification}): ${userQuery});

const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY");

consturl =
" https://generativelanguage.googleapis.com/vibeta/models/${GEMINI_MODEL}.generateContent";

const payload ={
contents: [{ parts: [{ text: userQuery }]}],
systemlinstruction: { parts: [{ text: systemlnstruction }] },
// Correct API field name
generationConfig: {
temperature: 0.8, // Use a higher temperature for creative, unique messages
// maxOutputTokens: 200 // Optional: limit length
b
13

const options ={
method: 'post),
contentType: 'application/json/,
headers: { 'x-goog-api-key': apiKey },
payload: JSON.stringify(payload),

muteHttpExceptions: true // Required to capture non-200 responses

b

// Return a function that executes the call. We execute this later in generateAllMessages.
const apiCallFunction = () =>{
// Executes the API call

return UrlFetchApp.fetch(url, options);

// Return the name and the fetcher function
return { name: name, fetcher: apiCallFunction };

}

/**

* Helper function to return the full classification name.
* @param {number} classification The classification number (1-5).
* @returns {string} The descriptive label.
*/
function getClassificationLabel(classification) {
switch (classification) {
case 1: return "Close Family";
case 2: return "Extended Family";
case 3: return "Close Friend";
case 4: return "Friend";
case 5: return "Deceased (Reflection)";

default: return "Unknown Category";

/**

* Sets up a daily time-driven trigger for the main function.
* RUN THIS FUNCTION *ONCE* TO START THE AUTOMATION.
*/
function createDailyTrigger() {
// Delete any existing triggers to prevent duplicates
const triggers = ScriptApp.getProjectTriggers();
triggers.forEach(trigger => {

if (trigger.getHandlerFunction() === "'sendBirthdayReminders') {

ScriptApp.deleteTrigger(trigger);

// Create a new daily trigger (runs between 7 AM and 8 AM)
ScriptApp.newTrigger('sendBirthdayReminders')
timeBased()
.everyDays(1)
.atHour(7) // You can adjust the hour (e.g., 6 for 6 AM)

.create();

Logger.log("Daily birthday reminder trigger created successfully.");
// Optional: Send a confirmation email that the trigger is set

MailApp.sendEmail(RECIPIENT_EMAIL, "Birthday App Setup Complete!", "Your daily birthday
reminder app trigger has been created and will run every day between 7 AM and 8 AM.");

}

/**

* NEW DIAGNOSTIC FUNCTION: Tests the API key validity directly.
* Run this function and check the logs for the outcome.
*/
function testApiKey() {
Logger.log("--- Starting API Key Test ---");
const apiKey = PropertiesService.getScriptProperties().getProperty('GEMINI_API_KEY");

consturl=
" https://generativelanguage.googleapis.com/vibeta/models/${GEMINI_MODEL}:generateContent" ;

if (lapiKey) {
Logger.log("ERROR: GEMINI_API_KEY not found in Script Properties. Please add it.");

return;

}

const payload ={
contents: [{ parts: [{ text: "Explain why this test call should succeed in 3 words." }] }],

b

const options ={
method: 'post),
contentType: 'application/json],
headers: { 'x-goog-api-key': apiKey },
payload: JSON.stringify(payload),

muteHttpExceptions: true

b

try {

const response = UrlFetchApp.fetch(url, options);

const rawResponseText = response.getContentText();

// Check for success (200 OK)
if (response.getResponseCode() === 200) {
const data = JSON.parse(rawResponseText);

const generatedText = data.candidates?.[0]?.content?.parts?.[0]?.text?.trim() || "Could not extract
text.";

Logger.log("API TEST RESULT: SUCCESS!");
Logger.log(® Generated Text: "${generatedText}"");

MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test SUCCESS!", "The Gemini API call succeeded.
The problem is likely in your spreadsheet data or configuration.");

}else{
// Log failure response for diagnosis
Logger.log(® API TEST RESULT: FAILURE! HTTP Status: ${response.getResponseCode()}");

Logger.log(®* RAW FAILURE RESPONSE: ${rawResponseText}");

MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test FAILED", “ The Gemini API call failed with HTTP
Status ${response.getResponseCode()}. Check the Apps Script logs for the RAW FAILURE RESPONSE
to see the exact error message (e.g., invalid key, billing, or quota).”);

}
}catch (e) {
Logger.log(* API TEST EXCEPTION: ${e.toString()}");

MailApp.sendEmail(RECIPIENT_EMAIL, "API Key Test EXCEPTION", * A network or system error
prevented the API call. Exception: ${e.toString()}");

}
Logger.log("--- APl Key Test Complete ---");

}

